Linear Transformation R3 To R2
Problem 339
          Allow $\{\mathbf{v}_1, \mathbf{5}_2\}$ be a ground of the vector space $\R^2$, where
          \[\mathbf{v}_1=\begin{bmatrix}
          1 \\
          one
          \end{bmatrix} \text{ and } \mathbf{v}_2=\begin{bmatrix}
          i \\
          -i
          \end{bmatrix}.\] The action of a linear transformation $T:\R^2\to \R^3$ on the basis $\{\mathbf{v}_1, \mathbf{v}_2\}$ is given past
          \brainstorm{align*}
          T(\mathbf{five}_1)=\begin{bmatrix}
          2 \\
          4 \\
          6
          \end{bmatrix} \text{ and } T(\mathbf{v}_2)=\begin{bmatrix}
          0 \\
          eight \\
          10
          \terminate{bmatrix}.
          \terminate{align*}
Notice the formula of $T(\mathbf{10})$, where
          \[\mathbf{x}=\begin{bmatrix}
          x \\
          y
          \end{bmatrix}\in \R^2.\]        
                       Add to solve later
Add to solve later          
                            
Sponsored Links
Contents
- Trouble 339
- Solution.- Solution ane (linear combination)
- Solution 2 (Matrix representation)
 
- Related Question.
Solution.
We give 2 solutions.
Solution one (linear combination)
Since we know the values of $T$ on the footing vectors $\mathbf{v}_1, \mathbf{five}_2$, if we express the vector $\mathbf{x}$ as a linear combination of $\mathbf{v}_1, \mathbf{v}_2$, we can find $F(\mathbf{10})$ by the linearity of the linear transformation $T$.
So permit us find the scalars $c_1, c_2$ such that
          \[\mathbf{ten}=c_1\mathbf{v}_1+c_2\mathbf{v}_2.\] We write this as
          \begin{align*}
          \begin{bmatrix}
          ten \\
          y
          \finish{bmatrix}=c_1\begin{bmatrix}
          1 \\
          1
          \end{bmatrix}+c_2\begin{bmatrix}
          1 \\
          -1
          \end{bmatrix}
          =
          \brainstorm{bmatrix}
          i & one\\
          1& -1
          \finish{bmatrix}\brainstorm{bmatrix}
          c_1 \\
          c_2
          \end{bmatrix}.
          \end{align*}
The matrix $\begin{bmatrix}
          ane & 1\\
          1& -1
          \cease{bmatrix}$ is invertible (as its determinant is $-2$) and its inverse matrix is
          \[\begin{bmatrix}
          1 & 1\\
          1& -one
          \end{bmatrix}^{-1}=\frac{1}{2}\begin{bmatrix}
          1 & 1\\
          i& -i
          \stop{bmatrix}.\]        
Thus, we have
          \begin{align*}
          \begin{bmatrix}
          c_1 \\
          c_2
          \end{bmatrix}&=\begin{bmatrix}
          one & i\\
          1& -ane
          \finish{bmatrix}^{-1}\brainstorm{bmatrix}
          x \\
          y
          \end{bmatrix}\\[6pt] &=\frac{1}{two}\begin{bmatrix}
          1 & 1\\
          1& -1
          \terminate{bmatrix}\begin{bmatrix}
          ten \\
          y
          \end{bmatrix}\\[6pt] &=\frac{1}{2}\begin{bmatrix}
          x+y \\
          10-y
          \end{bmatrix}
          \cease{marshal*}
          Therefore, nosotros obtain the linear combination
          \[\mathbf{x}=\frac{1}{2}(x+y)\mathbf{v}_1+\frac{1}{two}(x-y)\mathbf{v}_2.\]        
At present we compute $T(\mathbf{x})$ equally follows.
          We accept
          \begin{align*}
          T(\mathbf{x})&=T\left(\frac{ane}{ii}(x+y)\mathbf{v}_1+\frac{1}{2}(x-y)\mathbf{5}_2 \right)\\[6pt] &=\frac{1}{ii}(10+y)T(\mathbf{five}_1)+\frac{1}{ii}(ten-y)T(\mathbf{v}_2) && \text{by linearity of $T$}\\[6pt] &=\frac{1}{2}(x+y)\begin{bmatrix}
          2 \\
          4 \\
          vi
          \end{bmatrix}+\frac{1}{2}(x-y)\begin{bmatrix}
          0 \\
          8 \\
          10
          \end{bmatrix} \\[6pt]   &=\begin{bmatrix}
          x+y \\
          6x-2y \\
          8x-2y
          \end{bmatrix}.
          \end{marshal*}
          Hence the formula is
          \[T(\mathbf{x})=\brainstorm{bmatrix}
          ten+y \\
          6x-2y \\
          8x-2y
          \stop{bmatrix}.
          \]        
Solution two (Matrix representation)
In the second solution, we use the matrix representation for the linear transformation $T$.
          Let $A$ be the matrix of $T$ with respect to the standard basis $\{\brainstorm{bmatrix}
          1 \\
          0
          \end{bmatrix}, \brainstorm{bmatrix}
          0 \\
          i
          \stop{bmatrix}\}$ of $\R^2$.
          Thus, we have $T(\mathbf{x})=A\mathbf{ten}$ by definition.
To detect the matrix $A$, nosotros compute
          \begin{align*}
          A\begin{bmatrix}
          i & one\\
          1& -ane
          \end{bmatrix}&=A\brainstorm{bmatrix}
          \mathbf{v}_1 & \mathbf{five}_2 \\
          \end{bmatrix}\\[6pt]   &=\brainstorm{bmatrix}
          A\mathbf{v}_1 & A\mathbf{five}_2
          \terminate{bmatrix}\\[6pt] &=\begin{bmatrix}
          2 & 0 \\
          four  & 8 \\
          6 &ten
          \end{bmatrix}
          \end{align*}
          It follows that nosotros have
          \begin{align*}
          A&=\begin{bmatrix}
          2 & 0 \\
          4  & 8 \\
          six &ten
          \cease{bmatrix}\begin{bmatrix}
          1 & ane\\
          one& -1
          \end{bmatrix}^{-1}\\[6pt] &=\begin{bmatrix}
          2 & 0 \\
          four  & 8 \\
          6 &10
          \end{bmatrix}\frac{i}{ii}\brainstorm{bmatrix}
          1 & 1\\
          1& -ane
          \end{bmatrix}\\[6pt] &=\begin{bmatrix}
          1 & ane \\
          half dozen  & -2 \\
          8 &-2
          \end{bmatrix}.
          \stop{marshal*}
We at present be able to discover $T(\mathbf{x})$ as follows.
          Nosotros have
          \begin{marshal*}
          T(\mathbf{x})&=A\mathbf{x}\\[6pt] &=\begin{bmatrix}
          1 & 1 \\
          6  & -2 \\
          8 &-2
          \end{bmatrix}\begin{bmatrix}
          10 \\
          y
          \cease{bmatrix}\\[6pt] &=\begin{bmatrix}
          x+y \\
          6x-2y \\
          8x-2y
          \end{bmatrix},
          \finish{align*}
          which is, of course, the same formula that we obtained in solution one.
A similar problem for a linear transformation from $\R^3$ to $\R^3$ is given in the post "Make up one's mind linear transformation using matrix representation".
Instead of finding the changed matrix in solution 1, we could have used the Gauss-Hashemite kingdom of jordan elimination to find the coefficients.
          See the post "Give a formula for a linear transformation if the values on basis vectors are known" for a similar trouble and its solution using this alternative method.
                       Add to solve later on
Add to solve later on        
Sponsored Links
Linear Transformation R3 To R2,
Source: https://yutsumura.com/give-a-formula-for-a-linear-transformation-from-r2-to-r3/
Posted by: lopezbeturped1953.blogspot.com

0 Response to "Linear Transformation R3 To R2"
Post a Comment